Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genes Immun ; 25(2): 158-167, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38570727

RESUMEN

In this study, antibody response and a single-cell RNA-seq analysis were conducted on peripheral blood mononuclear cells from five different groups: naïve subjects vaccinated with AZD1222 (AZ) or Ad5-nCoV (Cso), individuals previously infected and later vaccinated (hybrid) with AZD1222 (AZ-hb) or Ad5-nCoV (Cso-hb), and those who were infected and had recovered from COVID-19 (Inf). The results showed that AZ induced more robust neutralizing antibody responses than Cso. The single-cell RNA data revealed a high frequency of memory B cells in the Cso and Cso-hb. In contrast, AZ and AZ-hb groups exhibited the highest proportion of activated naïve B cells expressing CXCR4. Transcriptomic analysis of CD4+ and CD8+ T cells demonstrated a heterogeneous response following vaccination, hybrid immunity, or natural infection. However, a single dose of Ad5-nCoV was sufficient to strongly activate CD4+ T cells (naïve and memory) expressing ANX1 and FOS, similar to the hybrid response observed with AZ. An interesting finding was the robust activation of a subset of CD8+ T cells expressing GZMB, GZMH, and IFNG genes in the Cso-hb group. Our findings suggest that both vaccines effectively stimulated the cellular immune response; however, the Ad5-nCoV induced a more robust CD8+ T-cell response in previously infected individuals.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Linfocitos T CD8-positivos , Adenoviridae/genética , ChAdOx1 nCoV-19 , Leucocitos Mononucleares , Perfilación de la Expresión Génica , Inmunidad Adaptativa , Anticuerpos Neutralizantes/genética , Anticuerpos Antivirales/genética
2.
iScience ; 26(4): 106562, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37063467

RESUMEN

This study reports the isolation and characterization of a human monoclonal antibody (mAb) called 19n01. This mAb was isolated by using single-cell RNAseq of B cells from donors infected with the ancestral strain. This mAb possesses a potent and broad capacity to bind and neutralize all previously circulating variants of concern (VOCs), including Omicron sublineages BA.1, BA.2, and BA.4/5. The pseudovirus neutralization assay revealed robust neutralization capacity against the G614 strain, BA.1, BA.2, and BA.4/5, with inhibitory concentration (IC50) values ranging from 0.0035 to 0.0164 µg/mL. The microneutralization assay using the G614 strain and VOCs demonstrated IC50 values of 0.013-0.267 µg/mL. Biophysical and structural analysis showed that 19n01 cross-competes with ACE2 binding to the receptor-binding domain (RBD) and the kinetic parameters confirmed the high affinity against the Omicron sublineages (KD of 61 and 30 nM for BA.2 and BA.4/5, respectively). These results suggest that the 19n01 is a remarkably potent and broadly reactive mAb.

3.
Front Immunol ; 14: 1276950, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38179057

RESUMEN

Introduction: This study evaluated the immune response to a multiepitope recombinant chimeric protein (CHIVAX) containing B- and T-cell epitopes of the SARS-CoV-2 spike's receptor binding domain (RBD) in a translational porcine model for pre-clinical studies. Methods: We generated a multiepitope recombinant protein engineered to include six coding conserved epitopes from the RBD domain of the SARS-CoV-2 S protein. Pigs were divided into groups and immunized with different doses of the protein, with serum samples collected over time to determine antibody responses by indirect ELISA and antibody titration. Peptide recognition was also analyzed by Western blotting. A surrogate neutralization assay with recombinant ACE2 and RBDs was performed. Intranasal doses of the immunogen were also prepared and tested on Vietnamese minipigs. Results: When the immunogen was administered subcutaneously, it induced specific IgG antibodies in pigs, and higher doses correlated with higher antibody levels. Antibodies from immunized pigs recognized individual peptides in the multiepitope vaccine and inhibited RBD-ACE2 binding for five variants of concern (VOC). Comparative antigen delivery methods showed that both, subcutaneous and combined subcutaneous/intranasal approaches, induced specific IgG and IgA antibodies, with the subcutaneous approach having superior neutralizing activity. CHIVAX elicited systemic immunity, evidenced by specific IgG antibodies in the serum, and local mucosal immunity, indicated by IgA antibodies in saliva, nasal, and bronchoalveolar lavage secretions. Importantly, these antibodies demonstrated neutralizing activity against SARS-CoV-2 in vitro. Discussion: The elicited antibodies recognized individual epitopes on the chimeric protein and demonstrated the capacity to block RBD-ACE2 binding of the ancestral SARS-CoV-2 strain and four VOCs. The findings provide proof of concept for using multiepitope recombinant antigens and a combined immunization protocol to induce a neutralizing immune response against SARS-CoV-2 in the pig translational model for preclinical studies.


Asunto(s)
COVID-19 , Vacunas , Porcinos , Animales , Humanos , Inmunidad Mucosa , COVID-19/prevención & control , Vacunas contra la COVID-19 , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Porcinos Enanos , Epítopos de Linfocito T , Inmunoglobulina A , Inmunoglobulina G
4.
Vaccines (Basel) ; 10(5)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35632440

RESUMEN

Dendritic cell (DC) targeting by DEC205+ cells effectively promotes the internalization of antigens that may trigger a specific immune response. In this study, we evaluated the ability of a recombinant antibody, anti-DEC205 (rAb ZH9F7), to trigger cellular endocytosis in subpopulations of DCs and targeted cells after intradermal injection and subsequent migration toward lymph nodes. Furthermore, the cellular immune response was evaluated in pigs after intradermal application of the antigenized rAb ZH9F7 combined with porcine circovirus type 2 cap antigen (rAb ZH9F7-Cap). We demonstrated that rAb ZH9F7 recognized conventional type 1 and 2 DCs from the blood and skin and monocytes. It promoted receptor-mediated endocytosis and migration of cDCs and moDCs toward regional lymph nodes. Intradermal application of rAb ZH9F7-Cap induced a higher frequency of IFN-γ-secreting CD4+CD8+ T lymphocytes and antibodies against Cap protein than that in the control group. In conclusion, the rAb ZH9F7-Cap system promoted the target of skin cDC1 and cDC2, provoking migration to the regional lymph nodes and inducing a Th1 response, as evidenced by the proliferation of double-positive CD4+CD8+ T cells, which correlates with an enhanced ability to target the cDC1 subset both in vitro and in vivo.

5.
Transbound Emerg Dis ; 69(4): e734-e745, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34655457

RESUMEN

The SARS-CoV-2 virus was detected for the first time in December 2019 in Wuhan, China. Currently, this virus has spread around the world, and new variants have emerged. This new pandemic virus provoked the rapid development of diagnostic tools, therapies and vaccines to control this new disease called COVID-19. Antibody detection by ELISA has been broadly used to recognize the number of persons infected with this virus or to evaluate the response of vaccinated individuals. As the pandemic spread, new questions arose, such as the prevalence of antibodies after natural infection and the response induced by the different vaccines. In Mexico, as in other countries, mRNA and viral-vectored vaccines have been widely used among the population. In this work, we developed an indirect ELISA test to evaluate S1 antibodies in convalescent and vaccinated individuals. By using this test, we showed that IgG antibodies against the S1 protein of SARS-CoV-2 were detected up to 42 weeks after the onset of the symptoms, in contrast to IgA and IgM, which decreased 14 weeks after the onset of symptoms. The evaluation of the antibody response in individuals vaccinated with Pfizer-BioNTech and CanSinoBio vaccines showed no differences 2 weeks after vaccination. However, after completing the two doses of Pfizer-BioNTech and the one dose of CanSinoBio, a significantly higher response of IgG antibodies was observed in persons vaccinated with Pfizer-BioNTech than in those vaccinated with CanSinoBio. In conclusion, these results confirm that after natural infection with SARS-CoV-2, it is possible to detect antibodies for up to 10 months. Additionally, our results showed that one dose of the CanSinoBio vaccine induces a lower response of IgG antibodies than that induced by the complete scheme of the Pfizer-BioNTech vaccine.


Asunto(s)
COVID-19 , Vacunas Virales , Animales , Anticuerpos Antivirales , COVID-19/prevención & control , COVID-19/veterinaria , Inmunoglobulina A , Inmunoglobulina G , Inmunoglobulina M , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...